Nanopartikel sind mittlerweile in allem, auch im Menschen
Nanotechnologie, einschließlich Nanosensoren, findet sich heute in Staub, Luft, Regenwasser, Pflanzen, Erde, Nahrungsmitteln, Vitaminen, Nahrungsergänzungsmitteln, Gesundheitspflege, Medikamenten, Kosmetika, Kleidung und im menschlichen Körper. Nanopartikel gelangen durch Einatmen, Aufnahme über die Haut, Verschlucken und durch medizinische oder zahnärztliche Eingriffe in den Körper.
Titandioxid-Nanopartikel (TiO2 NPs) sind das am häufigsten produzierte und eingenommene Nanomaterial. Sie werden in Lebensmittelzusätzen, Kosmetika, Körperpflegeprodukten und vielen anderen Produkten auf kommerzieller Ebene verwendet. TiO2 NPs reichern sich oral oder durch Inhalation an. Wir werden mit Halbleiterpartikeln gesättigt:
„Titanoxid (TiO2) ist aufgrund seiner optischen und elektronischen Eigenschaften ein Material mit breitem Anwendungsspektrum. Es wird als Zutat in Sonnenschutzlotionen und Lebensmitteln, als Pigment in Farben und als Halbleiter beim photokatalytischen Abbau organischer Verbindungen verwendet.“
Nanotechnologie im Staub
Smart Dust erstellt Netzwerke, die Sensoren, Computersoftware und drahtlose Kommunikationsfunktionen enthalten und über eine eigene autonome Stromversorgung verfügen.
Staub im Wind, intelligenter Staub, Sensoren in der Luft, überall
Zukünftige Bio-Nanotechnologie wird Computerchips in lebenden Zellen nutzen
Drahtlose Aufzeichnung im peripheren Nervensystem mit Ultraschall-Neuralstaub
Nanotechnologie in der Luft
Viele Nanopartikel, die in Aerosolform verwendet und in die Luft gesprüht werden, haben einen doppelten Zweck, das heißt, sie können mehr als eine Funktion erfüllen – möglicherweise mehr als ein Ziel. Dieses Dokument über Aerosolsprays zur Modifikation der Sonnenstrahlung erörtert die „ potenziellen Anwendungen in biologischen, elektronischen und Quantentechnologien“.
Diamantdotiertes Silica-Aerogel für Solar-Geoengineering
„Expertenmeinung: Aerosolbasierte Technologien können genutzt werden, um Nanopartikel mit der gewünschten Funktionalität zu designen.“
Herstellung von Nanopartikeln auf Aerosolbasis und ihre Anwendung im biomedizinischen Bereich
„In der Atmosphäre haben Nanopartikel eine grundlegende Bedeutung für chemische und physikalische Prozesse.“
- Institut für Meteorologie und Klimaforschung Atmopsheric Aerosol Research, Karlsruher Institut für Technologie
Es gibt eine lange Liste von Nanomaterialien, die zur Wettermanipulation/Geoengineering verwendet werden. Einige können die Atmosphäre beeinflussen und gleichzeitig Nanonetzwerke im menschlichen Körper aufbauen. Allerdings bauen sich nicht alle Nanomaterialien im Körper selbst auf.
In den Lungen von Kindern werden Nanomaterialien, sogenannte Kohlenstoffnanoröhren, nachgewiesen:
Anthropogene Kohlenstoffnanoröhren in den Atemwegen von Pariser Kindern gefunden
Was sind Kohlenstoffnanoröhren?
CIA Director John Brennan speaking on geoengineering and Statospheric Aerosol Injection (SAI), a form of Solar Radiation Mamagement (SRM).
"Dieses Glaskapillarröhrchen, hier auf einer Fingerspitze abgebildet, wurde mit glukoseempfindlichen Nanoröhrchen befüllt. Das Kapillarröhrchen hält die Nanoröhrchen zusammen, hat aber poröse Wände, so dass Glukosemoleküle an sie herankommen können."
Kohlenstoffnanoröhren ergeben eine neue Klasse biologischer Sensoren
Biosensoren auf Basis von Kohlenstoffnanoröhren
Solarstrahlungsmanagement (SRM):
Dies wird auch als Solartechnik bezeichnet und beinhaltet die Reflexion des Sonnenlichts zurück in den Weltraum, um den Planeten abzukühlen.
Das Einatmen von Nanopartikeln infolge der Modifikation der Sonnenstrahlung (Solar Radiation Modification, SRM) mittels stratosphärischer Aerosol-Injektionen wird im folgenden Dokument erläutert:
„Anhand der verfügbaren Beweise beschreiben wir die potenziellen direkten Auswirkungen auf die Gesundheit von Menschen und auf den Arbeitsplatz, wenn sie Aerosolen ausgesetzt werden, die wahrscheinlich für SRM verwendet werden, darunter Umweltsulfate, Ruß, metallisches Aluminium und Aluminiumoxid-Aerosole. Wir spekulieren über mögliche gesundheitliche Auswirkungen der Exposition gegenüber einem vielversprechenden SRM-Material, Bariumtitanat, und nutzen dazu unser Wissen über ähnliche Nanomaterialien.
Während der Herstellung, des Transports, der Bereitstellung und nach der Bereitstellung dieser Materialien kann es zu einer Exposition des Menschen gegenüber für SRM verwendeten Materialien kommen. In diesem Dokument wird, sofern nicht anders angegeben, die Inhalation als primärer Expositionsweg betrachtet.
Exposition der Bevölkerung:
Aufgrund der atmosphärischen Zirkulation und der Schwerkraftablagerung wird es nach dem Einsatz mit ziemlicher Sicherheit zu einer großflächigen Exposition der Bevölkerung gegenüber atmosphärisch injizierten SRM-Materialien kommen. Die Exposition der Bevölkerung könnte auch durch die Aufnahme von mit abgelagerten Partikeln kontaminierten Nahrungsmitteln und Wasser sowie durch transdermale Aufnahme erfolgen. Anders als bei der Exposition am Arbeitsplatz gibt es praktisch keine Forschung zur Schätzung der persönlichen Exposition gegenüber SRM-Materialien am Boden…
Im Gegensatz zur berufsbedingten Belastung wird die Belastung der Bevölkerung durch SRM-Materialien kontinuierlich und über Monate bis Jahre andauern, aber wahrscheinlich um Größenordnungen geringer sein als die Belastungen, denen sie berufsbedingt ausgesetzt ist. Die gesundheitlichen Auswirkungen werden daher in erster Linie chronischer Natur sein. Die Verwendung von persönlicher Schutzausrüstung zur Reduzierung der persönlichen Belastung durch abgelagerte SRM-Materialien ist auf Bevölkerungsebene nicht praktikabel.“
Nanopartikel Schwefeldioxid (SiO2) und Siliziumdioxid (SiO2) als Vorläufer in Flugzeugaerosolen sowie im Solar Radiation Management (SRM):
Mehrkomponentige Partikelneubildung aus Schwefelsäure, Ammoniak und biogenen Dämpfen
Der folgende Artikel verknüpft Solar Radiation Management und Geoengineering mit Blockchain. (Klicken Sie hier, um mehr über Blockchain und seine Verknüpfung mit anderen Aspekten der Biodigitalen Konvergenz zu erfahren.)
Geoengineering und Blockchain: Koordinierung der Kohlendioxidentfernung und des Solarstrahlungsmanagements zur Eindämmung künftiger Emissionen
Nanoparticles in cloud brightening:
This Scientific American article linked below about the same project reads, “The experiment is spraying microscopic salt particles into the air…” Note their misleading use of the word ‘microscopic’.
Researcher Pete Ramón points out:
“Microscale can never be nanoscale in terms of measurement. When non-scientific authors use micro- to describe nano- they're wrong, but when scientists in the field use micro- to describe nano-, it's intentionally misleading/confusing the reader. That said, nanomaterials can be coagulated/agglomerated/grown to create micro-sized materials. Also, creating nanomaterials from micro can also be done via techniques such as ablation and sonication.”
Geoengineering Test Quietly Launches Salt Crystals into Atmosphere (2024)
This article linked below reads, “Developing a new cloud-aerosol research instrument for use in small-scale field studies. This new research instrument generates controlled volumes and sizes of tiny, sub-micrometer seawater particles in sufficient numbers to increase the local brightness of low clouds in a marine environment"
Researcher Pete Ramón points out their use of the word “sub-micrometer” means by definition that it is nanoscale. If it’s in the nanoscale, we are talking about nanoparticles. Specifically, nanoparticles being released into the sky.
Marine Cloud Brightening Program
Salt particles ranging in size from 30-100 nanometers are the most effective for spraying.
“Factors determining the most efficient spray distribution for marine cloud brightening”
Nanoparticles in cloud seeding:
Water molecules in the atmosphere are too small to combine on their own to form cloud droplets. To form condensation, they need something larger to condense on (preferably flatter surface and at least one micrometer in size). That’s where cloud condensation nuclei (CCN) come in, otherwise known as cloud seeds.
Cloud seeds, or cloud condensation nuclei (CCN), are created by new particle formation (NPF), which are created by even smaller particles forming together.
“Nucleation” sums up this process, where extremely small aerosol particles form larger particles in the sky.
The scale of nucleation in the atmosphere ranges in the pico-/nano- scale of measurement. NPF may sometimes begin as tiny as picoparticles, build into nanoparticles, then cluster into bigger microparticles.
Atmospheric nanoparticles are referred to as Aitken nuclei by The American Meteorological Society (named after John Aitken).
-
"It's easier for water vapor to condense into water droplets when it has a particle to condense upon. These particles, such as dust and pollen, are called condensation nuclei. Eventually, enough water vapor condenses on pieces of dust, pollen, and other condensation nuclei to form a cloud." Clouds and How They Form
-
“There are two ingredients needed for clouds to form: water and nuclei.” How Clouds Form
-
“The smallest long lived nanoparticles in the atmosphere (radius<2 nm) condense from evaporated meteoric material in the mesopause region (h~85 km).” KIT- Atmospheric Aerosol Research
-
“Nanoparticles are a key component of atmospheric aerosols…” Atmospheric nanoparticles formed from heterogeneous reactions of organics
-
“Atmospheric nanoparticles can be formed either via nucleation in atmosphere or be directly emitted to the atmosphere.” Overview of Sources and Characteristics of Nanoparticles in Urban Traffic-Influenced Areas
-
The dependency of geoengineered sulfate aerosol on the emission strategy
-
Modelling the size distribution of geoengineered stratospheric aerosols
-
An invention for cloud seeding using nanotechnology, involving graphene oxide and silica dioxide nanoparticles: “3d reduced graphene oxide/sio 2 composite for ice nucleation”
-
Scientists advance cloud-seeding capabilities with nanotechnology
-
Using nanotechnology to accelerate the water condensation nucleation and growth for rain enhancement
-
Patent: Laminar microjet atomizer and method of aerial spraying of liquids
"Releasing charge into natural droplet systems such as fog and clouds offers a route to influence their properties. To facilitate charge release across a wide range of altitudes and meteorological circumstances—such as developing clouds—a charge emitter has been developed for integration with the conventional cloud-seeding flares carried by crewed cloud-seeding aircraft. This allows charge emitters to be used alongside, or instead of, conventional particle releasing flares.”
"(a) Beechcraft King Air C90 aircraft modified for cloud seeding missions, showing a flare rack under the wing that carries up to 24 conventional seeding flares. (b) Installation of a flare emitter in the lowered flare rack."
Weather Modification Incorporated:
Plasmonik in Aerosolen:
Was ist Plasmonik ?
Plasmonische Goldnanostäbe werden in Aerosolen verwendet.
„...wir demonstrieren experimentell ein plasmonisches Aerosol durch den Übergang flüssiger Suspensionen von Goldnanostäben in die Gasphase“
Plasmonische AerosolePlasmonische Goldnanostäbe und ihre Rolle in Aerosolen, die im Geoengineering verwendet werden, werden hier diskutiert: Plasmonische Aerosole
Plasmonische Aerosole in Wolken: „Etwa 2.650.000 Ergebnisse“
Schiffsspuren:
Von Seeschiffen werden Nanopartikel in Form sogenannter „Schiffsspuren“ in die Luft abgegeben. Dabei handelt es sich um Wolkenstreifen aus Schiffsabgasen, die mehrere Kilometer breit und mehrere Hundert Kilometer lang sein können.
„,Schiffsspuren‘ über dem nördlichen Pazifik. Diese Muster entstehen, wenn feine Partikel aus Schiffsabgasen in eine feuchte Atmosphärenschicht gelangen. Die Partikel bilden neue Wolken oder ziehen Wasser aus vorhandenen Wolkenpartikeln an. Bild aufgenommen vom Moderate Resolution Imaging Spectroradiometer (MODIS) an Bord des Aqua-Satelliten der NASA am 3. Juli 2010.“ Zitat und Bildnachweis
Fuel additives:
Nanoparticles in the form of multi-walled carbon nanotubes (MWCNT), single-walled carbon nanotubes (SWCNT), graphene nanoplatelets (GNP), and metal oxides such as cerium oxide (CeO2) are used in fuel additives for internal combustion engines in planes, buses and ships. This is another example of dual purpose technology. The nanoparticles in fuel combustion release nanoparticles in the exhaust.
-
"…adding Cu, Fe, Pt and graphene nanoparticles to diesel-biodiesel fuel blends can improve combustion and reduce emissions to varying degrees.” The Effects of Nano-Additives Added to Diesel-Biodiesel Fuel Blends on Combustion and Emission Characteristics of Diesel Engine: A Review
-
Nanoparticle Fuel Additives: Issues relating to nanoparticulate fuel additives
Sulfur as a fuel additive to create aerosol in planes is discussed here. "Options for dispersing gases from planes include the addition of sulfur to the fuel, which would release the aerosol through the exhaust system of the plane, or the attachment of a nozzle to release the sulfur from its own tank within the plane, which would be the better option.”
Benefits, risks, and costs of stratospheric geoengineering
Covering the earth in aerosol- from particle to plume:
"Stratospheric aerosol injection (SAI) is currently the most feasible climate intervention strategy and is being tested at ever increasing scales. It is critical to understand the global downstream impacts of these locally created interventions. However, in the finest detail, predictions require bridging scales from individual aerosol particles to large volumes of Earth’s atmosphere. Here the application of a novel discretization paradigm, the Eulerian-Lagrangian Point-Mass-Particle (ELPMP) discretization, is investigated as a method to model seeding, transport, and evolution of aerosols from injection-scale to Earth-scale impacts."
-
Modeling Aerosol Transport for Stratospheric Solar Geoengineering: from Particle to Plume Scale
-
An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment
-
PFC Release Unit: Schematic of gas flow (left); Aircraft release module (right).
-
An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment
-
Developing a Plume‐in‐Grid Model for Plume Evolution in the Stratosphere
-
An Overview of Geoengineering of Climate using Stratospheric Sulfate Aerosols
Resources devoted to the exposing of geoengineering:
“This interactive world map on geoengineering, prepared by ETC Group and the Heinrich Boell Foundation, sheds light on the alarming expansion of geoengineering research and experimentation. It builds on an earlier map of Earth Systems Experimentation published in 2012. That original map documented around 300 projects and experiments related to the field of geoengineering. Almost a decade later, more than 1,700 such projects have been identified- including past, ongoing and planned ones. When opening the map, only ongoing and planned projects are displayed, as well as those that have been completed or cancelled in the last five years. These include Carbon Removal and Solar Radiation Management as well as other geoengineering approaches. The map also contains Carbon Capture and Weather Modification projects. There is no complete record of weather and climate control projects so this map is necessarily partial.”
Interactive map of current geoengineering projects around the world
Nanotechnology in rainwater
Nanotechnology in plants
-
Plant Nanobionics: Application of Nanobiosensors in Plant Biology
-
The scientist who came up with the Plantenna: P.G. Steeneken
-
Plantenna: towards a network of vegetation-integrated sensors for plant and environmental monitoring
-
Plantenna: Using Plant Leaves to Increase Antenna Performance
-
Biogenic and Anthropogenic Magnetic Nanoparticles in the Phloem Sieve Tubes of Plants
Nanotechnology in farming (including organic farming)
Nanofarming, precision farming, smart farming, plant nanobionics, and other such trends all incorporate the use of nanotechnology, including “organic” farming:
-
Nanobionics in Crop Production: An Emerging Approach to Modulate Plant Functionalities
-
Some Emerging Opportunities of Nanotechnology Development for Soilless and Microgreen Farming
-
Nanofarming: Promising Solutions for the Future of the Global Agriculture Industry
-
Cyborg Botany: Exploring In-Planta Cybernetic Systems for Interaction
-
Synthesis of Three-Dimensional Graphene-Based Hybrid Materials for Water Purification: A Review
-
Graphene Oxide: A New Carrier for Slow Release of Plant Micronutrients
-
Graphene oxide based soil moisture microsensor for in situ agriculture applications
-
Graphene wearable for plants? Meet agritech’s next revolution
-
Internet of Things-Enabled Food and Plant Sensors to Empower Sustainability
-
Monitoring soil elements for irrigation management using Internet of Things (IoT) sensors
-
SAWPS: Secure Access Control for Wearable Plant Sensors- Reinforcing Agriculture 4.0 (IEEE)
-
Graphene wearable for plants? Meet agritech’s next revolution
-
Expert Panel on the Responsible Adoption of Quantum Technologies (soil)
-
Sensitive Technology Research Areas (environmental monitoring)
-
World Government Summit- Agriculture 4.0: The Future of Farming Technology
-
The Green Science Alliance and the Quantum Dot nano fertilizers
-
Talking to Plants: Carleton University Smart Fertilizer Project Could Be Game Changer for Farmers
-
Regulation and safety measures for nanotechnology-based agri-products (fertilizers)
-
Machine learning and computational chemistry to improve biochar fertilizers: a review
-
Challenges and advantages of electrospun nanofibers in agriculture: a review
-
Applying Nanotechnology to Fertilizer: Rationales, research, risks and regulatory challenges
-
Nanomaterials in Organic Food? The USDA Is Looking the Other Way
-
National Organic Program Leaves Door Open to Nanotechnology in Organic (2015)
Tower gardens:
Nanotechnology in food
This is one way it enters your body. Nanoparticles can breach the blood-brain barrier.
-
An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry
-
Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings
-
Application of Iron Nanoparticle-Based Materials in the Food Industry
-
Outlook and Challenges of Nanotechnologies for Food Packaging
-
Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review
-
Nanostructured materials in food science: Current progress and future prospects
Nanotechnology in food packaging:
-
Nanocoating for Extended Shelf Life of Fruits and Vegetables
-
Study Edible Nano-Coating Extends Shelf Life Of Perishable Food
“This study shows that a fraction of pharmaceutical/food grade titanium dioxide is absorbed systemically by humans following ingestion…In summary, we show here that a portion of ingested pharmaceutical and food grade TiO2, to which humans are very frequently orally exposed, is directly absorbed, as particles, into the blood stream of healthy volunteers.”
Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers
Nanotechnology in beverages
“The biodistribution study in major organs indicated that the NPs [nanoparticles] were easily accumulated in the digestive tract, and they were able to cross the blood-brain barrier and dispersed in the brain.”
Nanotechnology in vitamins and supplements
Nanotechnology in Nutraceuticals
-
Advances in Nanofabrication Technology for Nutraceuticals: New Insights and Future Trends
-
Organ-on-Chip: Advancing Nutraceutical Testing for Improved Health Outcomes:
Nanotechnology in Nootropics
Nanotechnology in tobacco
Nanotechnology in healthcare
Biomedical and healthcare applications relating to the Internet of Bio-Nano-Things (IoBNT) are discussed in the video below, such as floating nanosensors in the bloodstream that eavesdrop on molecular communication and report to devices outside of the body. The connecting of electronic and implantable devices such as brain implants, smart glasses, cardiac pacemakers, gastric stimulators, smart watches, insulin pumps, foot drop implants, and smart shoes with biological devices including artificial organs, engineered immune system cells, engineered gut microbes, and engineered tissue for regenerative medicine are also talked about.
The video also discusses how remotely controllable nanobots operate in the body, using nanotechnology and MEMS to engineer cells into biosensors, communication using Molecular Communication (MC), the making of “biological computers”, engineering the DNA of bacteria to create processors, and injecting memories into living cells by encoding the DNA of bacteria.
Dr. Bige Deniz Unluturk- Molecular Communication Platforms at Multiple Scales (video)
Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential
Equipment:
3D bioprinting is used in the making of healthcare equipment (face masks, face shields, rapid detection kits, testing swabs, biosensors, and various ventilator components):
Injections:
Covid-19 shots contain self assembling nanotechnology. This is well documented and will be only touched on briefly given the large scope of this subject.
-
Covid-19 injections based on graphene, nanonetwork and Internet of Nanothings (IoNT)
-
Potential of graphene-based materials to combat Covid-19: properties, perspectives, and prospects
-
The Perspective on Bio-Nano Interface Technology for Covid-19
The Covid shots were created utilizing 3D bioprinting with programmable shape-shifting nanotechnology enabled smart materials. See more here.
Other routes of injecting nanotech are talked about by Professor Ian Akyıldız. He discusses injecting remotely programable nano machines to help fight disease, complete with gateways and bio cyber interfaces with two way communication.
Science and Society Meetings - XI, Prof. Dr. İlhan Fuat Akyıldız, Georgia University
Nanobots that self replicate are used in chemotherapy, “vaccines”, gene therapy, and more:
Nano pharmacology/Nanomedicine:
The following two lectures describe ways in which nanoparticles enter human cells in relation to pharmacology:
-
Translation of Drug Exposure Between Virtual Populations to Support Drug Development
-
Cellular Uptake of Nanoparticles: Mechanisms and Consequences
“Currently more than 50 nanomedicine formulations have been approved for clinical use, as recently reviewed by multiple authors: These marketed nanomedicine formulations are approved for cancer treatment, iron-replacement therapies, anesthetics, fungal treatments, macular degeneration, and for the treatment of genetic rare diseases. Nano/microparticle imaging agents have also been included in the statistics. The majority of approved NP classes are represented by liposomes, iron colloids, protein-based NP, nano-emulsions, nanocrystals and metal oxide nanoparticles. The three new formulations mentioned in the previous section, not only show that the number of formulations approved are steadily increasing, but that new generations of nanomedicine are now reaching the market.”
Delivering the power of nanomedicine to patients today (2020)
Iron oxide nanoparticles can be introduced into the body through medicine. The following discuss medical applications of iron oxide in relation to pharmacology:
-
“A Physiologically Based Pharmacokinetic Model to Predict the Superparamagnetic Iron Oxide”
-
Materials Science for Nanomedicine: Iron Oxide Nanoparticles (2016)
Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review
"Plasmonic nanoparticles (NPs) are one of the most promising and studied inorganic nanomaterials for different biomedical applications… Herein, we review recently reported bioconjugated plasmonic NPs using different chemical approaches and loading cargoes (such as drugs, genes, and proteins) for enhancement of transdermal delivery across biological tissues.”
Bioconjugated Plasmonic Nanoparticles for Enhanced Skin Penetration
The use of gold nanoparticles in therapy for cancer treatment is discussed in this document.
“Targeted hyperthermia with plasmonic nanoparticles”
Smart pill from MIT monitors and medicates via Bluetooth
3D Printing of a Multi-Layered Polypill Containing Six Drugs Using a Novel Stereolithographic Method
CDRH Review of Medical Devices Containing Nanoscale Materials
Towards hospital-on-chip supported by 2D MXenes-based 5th generation intelligent biosensors
Homeopathy as Nanomedicine, Ayurvedice Nanomedicine, and Allopathic Nanomedicine, Nanoparticle herbs:
Traditional and alternative medicines are now being used in nanoparticle form, and may be included under the category of nano pharmacology.
-
Ayurvedic Nanomedicine, Allopathic Nanomedicine, and Homeopathy
-
Homoeopathy: A nano medicine (International Journal of Homoeopathic Sciences)
-
Advances in Integrative Nanomedicine for Improving Infectious Disease Treatment in Public Health
Orthopedic implants:
Traditional orthopedic implants now include nanotechnology. Specifically, implantable sensors- a variation of Internet or Bio-Nano-Things (IoBNT). 4D bioprinting is utilized.
The Homeland Defense & Security Information Analysis Center (HDIAC), which is part of the U.S. Department of Defense’s Information Analysis Center (IAC), talks about implantable nano sensors in the following webinar:
HDIAC Webinar - Bringing the Hospital to the Patient: Advances in Implantable Nano Sensors
Dr. Tom Webster, professor of chemical engineering at Northeastern University, talks more about implantable nano sensors in this brief video:
Nanotechnology in dentistry
Dental implants:
-
“In biological dentistry, every metal in the body is regarded as a kind of antenna for microwaves and other electromagnetic fields (EMF).”
How titanium implants act as antennas for electromagnetic fields -
Nanotheronostics: The unfavorable role of titanium particles released from dental implants
-
Titanium levels in the organs and blood of rats with a titanium implant…
-
"However, the chemical corrosions arising from interaction with the surrounding tissues and fluids in oral cavity can challenge the integrity of Ti implants and leach Ti ions/nanoparticles, thereby causing cytotoxicity."
Enhanced Corrosion Resistance and Local Therapy from Nano-Engineered Titanium Dental Implants
Nanotechnology in cosmetics
Many types of nanomaterials are found in cosmetics in increasing levels. They can absorb into the body from the skin.
-
Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances
-
Nanocosmetics Fundamentals, Applications and Toxicity: Micro and Nano Technologies
-
Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology
Nanotechnology in clothing and fabrics
-
IEEE: Emerging AI Technologies Inspiring the Next Generation of E-Textiles
-
IEEE: How Can the Internet of Clothing Benefit Our Wellbeing and Environment?
-
IEEE: Industry Connections and Standards Group for 3D Body Processing (3DBP)
-
Energy Harvesting Powered Smart Fabrics- The Future of Fashion
Nanotechnology in Tattoos
Nanotechnology in Wastewater
-
Graphene spiced-up anaerobic digestion substantially increases biogas production potential
-
Nano-graphene induced positive effects on methanogenesis in anaerobic digestion
Again, we see IEC is behind this. Click here and here to see IEC’s framework for these systems.
Nanotechnology in everything
Nonetechnology exists now in nearly everything now - that’s their goal - to connect EVERYTHING.
Internet of Everything (IoE) - From Molecules to the Universe by Murat Kuscu