Le nanoparticelle sono ormai presenti in ogni cosa, compresi gli esseri umani
Le nanotecnologie, compresi i nanosensori, si trovano ora nella polvere, nell’aria, nell’acqua piovana, nelle piante, nel suolo, nel cibo, nelle vitamine, negli integratori, nell’assistenza sanitaria, nella medicina, nei cosmetici, nell’abbigliamento e all’interno del corpo umano. Le nanoparticelle entrano nel corpo attraverso l'inalazione, l'assorbimento nella pelle, l'ingestione e attraverso procedure mediche o dentistiche.
Le nanoparticelle di biossido di titanio (TiO2 NP) sono i nanomateriali più comunemente prodotti e ingeriti. Sono utilizzati negli additivi alimentari, nei cosmetici, nei prodotti per la cura personale e in molte altre cose a livello commerciale. Le NP di TiO2 si accumulano per via orale o per inalazione. Siamo saturi di particelle semiconduttrici:
"L'ossido di titanio (TiO2) è un materiale con ampie applicazioni grazie alle sue proprietà ottiche ed elettroniche. È utilizzato come ingrediente nelle lozioni solari e nei prodotti alimentari, come pigmento nelle vernici e come semiconduttori nella degradazione fotocatalitica dei composti organici."
Nanotecnologia nella polvere
La polvere intelligente crea reti che contengono sensori, software per computer, capacità di comunicazione wireless e dispongono di una propria alimentazione autonoma.
Polvere nel vento, polvere intelligente, sensori nell'aria, ovunque
Come le nanotecnologie possono apportare benefici alle città intelligenti
La futura bionanotecnologia utilizzerà chip di computer all’interno delle cellule viventi
Registrazione wireless nel sistema nervoso periferico con polvere neurale ad ultrasuoni
Nanotecnologie nell'aria
Molte nanoparticelle utilizzate nell’aerosol e spruzzate nell’aria hanno un duplice scopo, nel senso che sono capaci di più di una funzione – è possibile che servano a più di un obiettivo. Questo documento sullo spray aerosol per la modificazione della radiazione solare discute le " potenziali applicazioni nelle tecnologie biologiche, elettroniche e quantistiche".
Aerogel di silice drogata con diamante per la geoingegneria solare
"Opinione degli esperti: le tecnologie basate sull'aerosol possono essere utilizzate per progettare nanoparticelle con la funzionalità desiderata."
Fabbricazione di nanoparticelle basate su aerosol e loro applicazioni in campi biomedici
"Nell'atmosfera le nanoparticelle hanno un'importanza fondamentale per i processi chimici e fisici."
- Istituto di meteorologia e ricerca sul clima Ricerca sull'aerosol atmosferico, Istituto di tecnologia di Karlsruhe
Esiste un lungo elenco di nanomateriali utilizzati nella modificazione meteorologica/geoingegneria. Alcuni sono in grado di influenzare l’atmosfera e allo stesso tempo costruire nanoreti all’interno del corpo umano. Tuttavia, non tutti i nanomateriali si autoassemblano una volta entrati nel corpo.
Nanomateriali chiamati nanotubi di carbonio si trovano nei polmoni dei bambini:
Nanotubi di carbonio antropogenici trovati nelle vie aeree dei bambini parigini
Cosa sono i nanotubi di carbonio?
CIA Director John Brennan speaking on geoengineering and Statospheric Aerosol Injection (SAI), a form of Solar Radiation Mamagement (SRM).
"Questo tubo capillare di vetro, mostrato qui sul polpastrello, è stato caricato con nanotubi sensibili al glucosio. Il tubo capillare mantiene i nanotubi confinati, ma ha pareti porose in modo che le molecole di glucosio possano raggiungerli."
I nanotubi di carbonio producono una nuova classe di sensori biologici
Biosensori basati su nanotubi di carbonio
Gestione della Radiazione Solare (SRM):
Questo è anche noto come ingegneria solare e comporta la riflessione della luce solare nello spazio per raffreddare il pianeta.
L'inalazione di nanoparticelle come risultato della modificazione della radiazione solare (SRM) utilizzando iniezioni di aerosol stratosferici è discussa nel documento seguente:
“Utilizzando le prove disponibili, descriviamo i potenziali impatti diretti sull’occupazione e sulla salute pubblica delle esposizioni ad aerosol che potrebbero essere utilizzati per l’SRM, inclusi solfati ambientali, nerofumo, alluminio metallico e aerosol di ossido di alluminio. Ipotizziamo sui possibili impatti sulla salute dell'esposizione a un promettente materiale SRM, il titanato di bario, utilizzando la conoscenza di nanomateriali simili.
Le esposizioni umane ai materiali utilizzati per l'SRM potrebbero verificarsi durante la produzione, il trasporto, l'implementazione e la post-implementazione di tali materiali. In questo documento, salvo diversa indicazione, l'inalazione è la principale via di esposizione considerata.
Esposizioni della popolazione:
A causa della circolazione atmosferica e della deposizione gravitazionale, quasi certamente si verificheranno esposizioni su larga scala della popolazione ai materiali SRM iniettati nell’atmosfera dopo il loro dispiegamento. Le esposizioni della popolazione potrebbero verificarsi anche attraverso l'ingestione di cibo e acqua contaminati da particelle depositate, oltre che per via transdermica. A differenza delle esposizioni professionali, non è stata condotta praticamente alcuna ricerca per stimare le esposizioni personali a livello del suolo ai materiali SRM…
A differenza delle esposizioni professionali, le esposizioni della popolazione ai materiali SRM saranno continue e prolungate per mesi o anni, ma saranno probabilmente di ordini di grandezza inferiori a quelle sperimentate a livello professionale. Pertanto gli effetti sulla salute saranno principalmente di natura cronica. L’uso dei DPI per ridurre l’esposizione personale ai materiali SRM depositati non è fattibile su scala di popolazione”.
Nanoparticelle Anidride solforosa (SiO2) e Biossido di silicio (SiO2) come precursori nell'aerosol degli aerei utilizzati nella gestione delle radiazioni solari (SRM):
Formazione di nuove particelle multicomponente da acido solforico, ammoniaca e vapori biogenici
L'articolo seguente collega la gestione della radiazione solare e la geoingegneria alla Blockchain. (Clicca qui per ulteriori informazioni sulla Blockchain e su come si collega ad altri aspetti della convergenza biodigitale.)
Geoingegneria e blockchain: coordinare la rimozione dell’anidride carbonica e la gestione della radiazione solare per affrontare le emissioni future
Nanoparticles in cloud brightening:
This Scientific American article linked below about the same project reads, “The experiment is spraying microscopic salt particles into the air…” Note their misleading use of the word ‘microscopic’.
Researcher Pete Ramón points out:
“Microscale can never be nanoscale in terms of measurement. When non-scientific authors use micro- to describe nano- they're wrong, but when scientists in the field use micro- to describe nano-, it's intentionally misleading/confusing the reader. That said, nanomaterials can be coagulated/agglomerated/grown to create micro-sized materials. Also, creating nanomaterials from micro can also be done via techniques such as ablation and sonication.”
Geoengineering Test Quietly Launches Salt Crystals into Atmosphere (2024)
This article linked below reads, “Developing a new cloud-aerosol research instrument for use in small-scale field studies. This new research instrument generates controlled volumes and sizes of tiny, sub-micrometer seawater particles in sufficient numbers to increase the local brightness of low clouds in a marine environment"
Researcher Pete Ramón points out their use of the word “sub-micrometer” means by definition that it is nanoscale. If it’s in the nanoscale, we are talking about nanoparticles. Specifically, nanoparticles being released into the sky.
Marine Cloud Brightening Program
Salt particles ranging in size from 30-100 nanometers are the most effective for spraying.
“Factors determining the most efficient spray distribution for marine cloud brightening”
Nanoparticles in cloud seeding:
Water molecules in the atmosphere are too small to combine on their own to form cloud droplets. To form condensation, they need something larger to condense on (preferably flatter surface and at least one micrometer in size). That’s where cloud condensation nuclei (CCN) come in, otherwise known as cloud seeds.
Cloud seeds, or cloud condensation nuclei (CCN), are created by new particle formation (NPF), which are created by even smaller particles forming together.
“Nucleation” sums up this process, where extremely small aerosol particles form larger particles in the sky.
The scale of nucleation in the atmosphere ranges in the pico-/nano- scale of measurement. NPF may sometimes begin as tiny as picoparticles, build into nanoparticles, then cluster into bigger microparticles.
Atmospheric nanoparticles are referred to as Aitken nuclei by The American Meteorological Society (named after John Aitken).
-
"It's easier for water vapor to condense into water droplets when it has a particle to condense upon. These particles, such as dust and pollen, are called condensation nuclei. Eventually, enough water vapor condenses on pieces of dust, pollen, and other condensation nuclei to form a cloud." Clouds and How They Form
-
“There are two ingredients needed for clouds to form: water and nuclei.” How Clouds Form
-
“The smallest long lived nanoparticles in the atmosphere (radius<2 nm) condense from evaporated meteoric material in the mesopause region (h~85 km).” KIT- Atmospheric Aerosol Research
-
“Nanoparticles are a key component of atmospheric aerosols…” Atmospheric nanoparticles formed from heterogeneous reactions of organics
-
“Atmospheric nanoparticles can be formed either via nucleation in atmosphere or be directly emitted to the atmosphere.” Overview of Sources and Characteristics of Nanoparticles in Urban Traffic-Influenced Areas
-
The dependency of geoengineered sulfate aerosol on the emission strategy
-
Modelling the size distribution of geoengineered stratospheric aerosols
-
An invention for cloud seeding using nanotechnology, involving graphene oxide and silica dioxide nanoparticles: “3d reduced graphene oxide/sio 2 composite for ice nucleation”
-
Scientists advance cloud-seeding capabilities with nanotechnology
-
Using nanotechnology to accelerate the water condensation nucleation and growth for rain enhancement
-
Patent: Laminar microjet atomizer and method of aerial spraying of liquids
"Releasing charge into natural droplet systems such as fog and clouds offers a route to influence their properties. To facilitate charge release across a wide range of altitudes and meteorological circumstances—such as developing clouds—a charge emitter has been developed for integration with the conventional cloud-seeding flares carried by crewed cloud-seeding aircraft. This allows charge emitters to be used alongside, or instead of, conventional particle releasing flares.”
"(a) Beechcraft King Air C90 aircraft modified for cloud seeding missions, showing a flare rack under the wing that carries up to 24 conventional seeding flares. (b) Installation of a flare emitter in the lowered flare rack."
Weather Modification Incorporated:
Plasmonica negli aerosol:
Cos'è la plasmonica ?
I nanotubi d'oro plasmonici sono utilizzati negli aerosol.
"...dimostriamo sperimentalmente un aerosol plasmonico trasformando sospensioni liquide di nanobarre d'oro nella fase gassosa"
Aerosol plasmoniciI nanotubi d'oro plasmonici e il loro ruolo negli aerosol utilizzati nella geoingegneria sono discussi qui: Aerosol plasmonici
Aerosol plasmonici nelle nubi: “Circa 2.650.000 risultati”
Tracce della nave:
Le nanoparticelle delle navi marittime vengono rilasciate nell’aria sotto forma di “tracce di navi”, strisce di nuvole derivanti dalle emissioni delle navi che possono raggiungere diverse miglia di larghezza e diverse centinaia di miglia di lunghezza.
“'Tracce di navi' sopra l'Oceano Pacifico settentrionale. Questi modelli vengono prodotti quando le particelle fini provenienti dai gas di scarico delle navi galleggiano in uno strato umido di atmosfera. Le particelle seminano nuove nuvole o attirano acqua dalle particelle nuvolose esistenti. Immagine scattata dallo spettroradiometro per immagini a risoluzione moderata (MODIS) a bordo del satellite Aqua della NASA il 3 luglio 2010. Citazione e credito immagine
Fuel additives:
Nanoparticles in the form of multi-walled carbon nanotubes (MWCNT), single-walled carbon nanotubes (SWCNT), graphene nanoplatelets (GNP), and metal oxides such as cerium oxide (CeO2) are used in fuel additives for internal combustion engines in planes, buses and ships. This is another example of dual purpose technology. The nanoparticles in fuel combustion release nanoparticles in the exhaust.
-
"…adding Cu, Fe, Pt and graphene nanoparticles to diesel-biodiesel fuel blends can improve combustion and reduce emissions to varying degrees.” The Effects of Nano-Additives Added to Diesel-Biodiesel Fuel Blends on Combustion and Emission Characteristics of Diesel Engine: A Review
-
Nanoparticle Fuel Additives: Issues relating to nanoparticulate fuel additives
Sulfur as a fuel additive to create aerosol in planes is discussed here. "Options for dispersing gases from planes include the addition of sulfur to the fuel, which would release the aerosol through the exhaust system of the plane, or the attachment of a nozzle to release the sulfur from its own tank within the plane, which would be the better option.”
Benefits, risks, and costs of stratospheric geoengineering
Covering the earth in aerosol- from particle to plume:
"Stratospheric aerosol injection (SAI) is currently the most feasible climate intervention strategy and is being tested at ever increasing scales. It is critical to understand the global downstream impacts of these locally created interventions. However, in the finest detail, predictions require bridging scales from individual aerosol particles to large volumes of Earth’s atmosphere. Here the application of a novel discretization paradigm, the Eulerian-Lagrangian Point-Mass-Particle (ELPMP) discretization, is investigated as a method to model seeding, transport, and evolution of aerosols from injection-scale to Earth-scale impacts."
-
Modeling Aerosol Transport for Stratospheric Solar Geoengineering: from Particle to Plume Scale
-
An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment
-
PFC Release Unit: Schematic of gas flow (left); Aircraft release module (right).
-
An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment
-
Developing a Plume‐in‐Grid Model for Plume Evolution in the Stratosphere
-
An Overview of Geoengineering of Climate using Stratospheric Sulfate Aerosols
Resources devoted to the exposing of geoengineering:
“This interactive world map on geoengineering, prepared by ETC Group and the Heinrich Boell Foundation, sheds light on the alarming expansion of geoengineering research and experimentation. It builds on an earlier map of Earth Systems Experimentation published in 2012. That original map documented around 300 projects and experiments related to the field of geoengineering. Almost a decade later, more than 1,700 such projects have been identified- including past, ongoing and planned ones. When opening the map, only ongoing and planned projects are displayed, as well as those that have been completed or cancelled in the last five years. These include Carbon Removal and Solar Radiation Management as well as other geoengineering approaches. The map also contains Carbon Capture and Weather Modification projects. There is no complete record of weather and climate control projects so this map is necessarily partial.”
Interactive map of current geoengineering projects around the world
Nanotechnology in rainwater
Nanotechnology in plants
-
Plant Nanobionics: Application of Nanobiosensors in Plant Biology
-
The scientist who came up with the Plantenna: P.G. Steeneken
-
Plantenna: towards a network of vegetation-integrated sensors for plant and environmental monitoring
-
Plantenna: Using Plant Leaves to Increase Antenna Performance
-
Biogenic and Anthropogenic Magnetic Nanoparticles in the Phloem Sieve Tubes of Plants
Nanotechnology in farming (including organic farming)
Nanofarming, precision farming, smart farming, plant nanobionics, and other such trends all incorporate the use of nanotechnology, including “organic” farming:
-
Nanobionics in Crop Production: An Emerging Approach to Modulate Plant Functionalities
-
Some Emerging Opportunities of Nanotechnology Development for Soilless and Microgreen Farming
-
Nanofarming: Promising Solutions for the Future of the Global Agriculture Industry
-
Cyborg Botany: Exploring In-Planta Cybernetic Systems for Interaction
-
Synthesis of Three-Dimensional Graphene-Based Hybrid Materials for Water Purification: A Review
-
Graphene Oxide: A New Carrier for Slow Release of Plant Micronutrients
-
Graphene oxide based soil moisture microsensor for in situ agriculture applications
-
Graphene wearable for plants? Meet agritech’s next revolution
-
Internet of Things-Enabled Food and Plant Sensors to Empower Sustainability
-
Monitoring soil elements for irrigation management using Internet of Things (IoT) sensors
-
SAWPS: Secure Access Control for Wearable Plant Sensors- Reinforcing Agriculture 4.0 (IEEE)
-
Graphene wearable for plants? Meet agritech’s next revolution
-
Expert Panel on the Responsible Adoption of Quantum Technologies (soil)
-
Sensitive Technology Research Areas (environmental monitoring)
-
World Government Summit- Agriculture 4.0: The Future of Farming Technology
-
The Green Science Alliance and the Quantum Dot nano fertilizers
-
Talking to Plants: Carleton University Smart Fertilizer Project Could Be Game Changer for Farmers
-
Regulation and safety measures for nanotechnology-based agri-products (fertilizers)
-
Machine learning and computational chemistry to improve biochar fertilizers: a review
-
Challenges and advantages of electrospun nanofibers in agriculture: a review
-
Applying Nanotechnology to Fertilizer: Rationales, research, risks and regulatory challenges
-
Nanomaterials in Organic Food? The USDA Is Looking the Other Way
-
National Organic Program Leaves Door Open to Nanotechnology in Organic (2015)
Tower gardens:
Nanotechnology in food
This is one way it enters your body. Nanoparticles can breach the blood-brain barrier.
-
An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry
-
Microbiome-Gut-Brain Axis as a Biomolecular Communication Network for the Internet of Bio-NanoThings
-
Application of Iron Nanoparticle-Based Materials in the Food Industry
-
Outlook and Challenges of Nanotechnologies for Food Packaging
-
Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review
-
Nanostructured materials in food science: Current progress and future prospects
Nanotechnology in food packaging:
-
Nanocoating for Extended Shelf Life of Fruits and Vegetables
-
Study Edible Nano-Coating Extends Shelf Life Of Perishable Food
“This study shows that a fraction of pharmaceutical/food grade titanium dioxide is absorbed systemically by humans following ingestion…In summary, we show here that a portion of ingested pharmaceutical and food grade TiO2, to which humans are very frequently orally exposed, is directly absorbed, as particles, into the blood stream of healthy volunteers.”
Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers
Nanotechnology in beverages
“The biodistribution study in major organs indicated that the NPs [nanoparticles] were easily accumulated in the digestive tract, and they were able to cross the blood-brain barrier and dispersed in the brain.”
Nanotechnology in vitamins and supplements
Nanotechnology in Nutraceuticals
-
Advances in Nanofabrication Technology for Nutraceuticals: New Insights and Future Trends
-
Organ-on-Chip: Advancing Nutraceutical Testing for Improved Health Outcomes:
Nanotechnology in Nootropics
Nanotechnology in tobacco
Nanotechnology in healthcare
Biomedical and healthcare applications relating to the Internet of Bio-Nano-Things (IoBNT) are discussed in the video below, such as floating nanosensors in the bloodstream that eavesdrop on molecular communication and report to devices outside of the body. The connecting of electronic and implantable devices such as brain implants, smart glasses, cardiac pacemakers, gastric stimulators, smart watches, insulin pumps, foot drop implants, and smart shoes with biological devices including artificial organs, engineered immune system cells, engineered gut microbes, and engineered tissue for regenerative medicine are also talked about.
The video also discusses how remotely controllable nanobots operate in the body, using nanotechnology and MEMS to engineer cells into biosensors, communication using Molecular Communication (MC), the making of “biological computers”, engineering the DNA of bacteria to create processors, and injecting memories into living cells by encoding the DNA of bacteria.
Dr. Bige Deniz Unluturk- Molecular Communication Platforms at Multiple Scales (video)
Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential
Equipment:
3D bioprinting is used in the making of healthcare equipment (face masks, face shields, rapid detection kits, testing swabs, biosensors, and various ventilator components):
Injections:
Covid-19 shots contain self assembling nanotechnology. This is well documented and will be only touched on briefly given the large scope of this subject.
-
Covid-19 injections based on graphene, nanonetwork and Internet of Nanothings (IoNT)
-
Potential of graphene-based materials to combat Covid-19: properties, perspectives, and prospects
-
The Perspective on Bio-Nano Interface Technology for Covid-19
The Covid shots were created utilizing 3D bioprinting with programmable shape-shifting nanotechnology enabled smart materials. See more here.
Other routes of injecting nanotech are talked about by Professor Ian Akyıldız. He discusses injecting remotely programable nano machines to help fight disease, complete with gateways and bio cyber interfaces with two way communication.
Science and Society Meetings - XI, Prof. Dr. İlhan Fuat Akyıldız, Georgia University
Nanobots that self replicate are used in chemotherapy, “vaccines”, gene therapy, and more:
Nano pharmacology/Nanomedicine:
The following two lectures describe ways in which nanoparticles enter human cells in relation to pharmacology:
-
Translation of Drug Exposure Between Virtual Populations to Support Drug Development
-
Cellular Uptake of Nanoparticles: Mechanisms and Consequences
“Currently more than 50 nanomedicine formulations have been approved for clinical use, as recently reviewed by multiple authors: These marketed nanomedicine formulations are approved for cancer treatment, iron-replacement therapies, anesthetics, fungal treatments, macular degeneration, and for the treatment of genetic rare diseases. Nano/microparticle imaging agents have also been included in the statistics. The majority of approved NP classes are represented by liposomes, iron colloids, protein-based NP, nano-emulsions, nanocrystals and metal oxide nanoparticles. The three new formulations mentioned in the previous section, not only show that the number of formulations approved are steadily increasing, but that new generations of nanomedicine are now reaching the market.”
Delivering the power of nanomedicine to patients today (2020)
Iron oxide nanoparticles can be introduced into the body through medicine. The following discuss medical applications of iron oxide in relation to pharmacology:
-
“A Physiologically Based Pharmacokinetic Model to Predict the Superparamagnetic Iron Oxide”
-
Materials Science for Nanomedicine: Iron Oxide Nanoparticles (2016)
Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review
"Plasmonic nanoparticles (NPs) are one of the most promising and studied inorganic nanomaterials for different biomedical applications… Herein, we review recently reported bioconjugated plasmonic NPs using different chemical approaches and loading cargoes (such as drugs, genes, and proteins) for enhancement of transdermal delivery across biological tissues.”
Bioconjugated Plasmonic Nanoparticles for Enhanced Skin Penetration
The use of gold nanoparticles in therapy for cancer treatment is discussed in this document.
“Targeted hyperthermia with plasmonic nanoparticles”
Smart pill from MIT monitors and medicates via Bluetooth
3D Printing of a Multi-Layered Polypill Containing Six Drugs Using a Novel Stereolithographic Method
CDRH Review of Medical Devices Containing Nanoscale Materials
Towards hospital-on-chip supported by 2D MXenes-based 5th generation intelligent biosensors
Homeopathy as Nanomedicine, Ayurvedice Nanomedicine, and Allopathic Nanomedicine, Nanoparticle herbs:
Traditional and alternative medicines are now being used in nanoparticle form, and may be included under the category of nano pharmacology.
-
Ayurvedic Nanomedicine, Allopathic Nanomedicine, and Homeopathy
-
Homoeopathy: A nano medicine (International Journal of Homoeopathic Sciences)
-
Advances in Integrative Nanomedicine for Improving Infectious Disease Treatment in Public Health
Orthopedic implants:
Traditional orthopedic implants now include nanotechnology. Specifically, implantable sensors- a variation of Internet or Bio-Nano-Things (IoBNT). 4D bioprinting is utilized.
The Homeland Defense & Security Information Analysis Center (HDIAC), which is part of the U.S. Department of Defense’s Information Analysis Center (IAC), talks about implantable nano sensors in the following webinar:
HDIAC Webinar - Bringing the Hospital to the Patient: Advances in Implantable Nano Sensors
Dr. Tom Webster, professor of chemical engineering at Northeastern University, talks more about implantable nano sensors in this brief video:
Nanotechnology in dentistry
Dental implants:
-
“In biological dentistry, every metal in the body is regarded as a kind of antenna for microwaves and other electromagnetic fields (EMF).”
How titanium implants act as antennas for electromagnetic fields -
Nanotheronostics: The unfavorable role of titanium particles released from dental implants
-
Titanium levels in the organs and blood of rats with a titanium implant…
-
"However, the chemical corrosions arising from interaction with the surrounding tissues and fluids in oral cavity can challenge the integrity of Ti implants and leach Ti ions/nanoparticles, thereby causing cytotoxicity."
Enhanced Corrosion Resistance and Local Therapy from Nano-Engineered Titanium Dental Implants
Nanotechnology in cosmetics
Many types of nanomaterials are found in cosmetics in increasing levels. They can absorb into the body from the skin.
-
Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances
-
Nanocosmetics Fundamentals, Applications and Toxicity: Micro and Nano Technologies
-
Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology
Nanotechnology in clothing and fabrics
-
IEEE: Emerging AI Technologies Inspiring the Next Generation of E-Textiles
-
IEEE: How Can the Internet of Clothing Benefit Our Wellbeing and Environment?
-
IEEE: Industry Connections and Standards Group for 3D Body Processing (3DBP)
-
Energy Harvesting Powered Smart Fabrics- The Future of Fashion
Nanotechnology in Tattoos
Nanotechnology in Wastewater
-
Graphene spiced-up anaerobic digestion substantially increases biogas production potential
-
Nano-graphene induced positive effects on methanogenesis in anaerobic digestion
Again, we see IEC is behind this. Click here and here to see IEC’s framework for these systems.
Nanotechnology in everything
Nonetechnology exists now in nearly everything now - that’s their goal - to connect EVERYTHING.
Internet of Everything (IoE) - From Molecules to the Universe by Murat Kuscu